Riemann’s Saddle-point Method and the Riemann-Siegel Formula

نویسنده

  • M. V. Berry
چکیده

Riemann’s way to calculate his zeta function on the critical line was based on an application of his saddle-point technique for approximating integrals that seems astonishing even today. His contour integral for the remainder in the Dirichlet series for the zeta function involved not an isolated saddle, nor a saddle near a pole or an end-point or several coalescing saddles, but the configuration, unfamiliar even now, of a saddle close to an infinite string of poles. Riemann evaluated the associated integral exactly, and the resulting Riemann-Siegel formula underlies ways of computing the Riemann zeros and one of the physical approaches to the Riemann hypothesis. 2000 Mathematics Subject Classification: 01A55, 11M26, 11Y35, 30B50, 30E15, 34E05, 41A60.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Riemann-Siegel formula

In this article we derive a generalization of the Riemann-Siegel asymptotic formula for the Riemann zeta function. By subtracting the singularities closest to the critical point we obtain a significant reduction of the error term at the expense of a few evaluations of the error function. We illustrate the efficiency of this method by comparing it to the classical Riemann-Siegel formula.

متن کامل

The Development of a Hybrid Asymptotic Expansion for the Hardy Function , Consisting of Just Main Sum Terms, Some Less than the Celebrated Riemann-siegel Formula

This paper begins with a re-examination of the Riemann-Siegel Integral, which first discovered amongst by Bessel-Hagen in 1926 and expanded upon by C. L. Siegel on his 1932 account of Riemann’s unpublished work on the zeta function. By application of standard asymptotic methods for integral estimation, and the use of certain approximations pertaining to special functions, it proves possible to ...

متن کامل

Riemann ’ s and ζ ( s )

[This document is http://www.math.umn.edu/ ̃garrett/m/complex/notes 2014-15/09c Riemann and zeta.pdf] 1. Riemann’s explicit formula 2. Analytic continuation and functional equation of ζ(s) 3. Appendix: Perron identity [Riemann 1859] exhibited a precise relationship between primes and zeros of ζ(s). A similar idea applies to any zeta or L-function with analytic continuation, functional equation, ...

متن کامل

High precision computation of Riemann's zeta function by the Riemann-Siegel formula, I

We present rigorous and sharp bounds for the terms and remainder in the Riemann-Siegel formula (for a general argument, not necessarily on the critical line). This allows for the computation of ζ(s) and Z(t) to high precision. We also derive the Riemann-Siegel formula in a new and more direct way.

متن کامل

An Explicit Formula Relating Stieltjes Constants and Li’s Numbers

In this paper we present a new formula relating Stieltjes numbers γn and Laurent coefficinets ηn of logarithmic derivative of the Riemann’s zeta function. Using it we derive an explicit formula for the oscillating part of Li’s numbers ∼ λn which are connected with the Riemann hypothesis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016